Chemical Preparation and Crystal Structure Refinement of KBaPO_{4} Monophosphate

R. MASSE and A. DURIF
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USTMG, 166X 38042 Grenoble Cédex, France

Received February 26, 1987; in revised form April 13, 1987

Single-crystal preparation of KBaPO_{4} is reported. KBaPO_{4} is orthorhombic, Pnma, with $a=7.709(4)$, $b=5.663(4), c=9.972(5) \AA$ and $Z=4$. The $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-like model previously proposed for this salt from X-ray powder data is confirmed by the present single-crystal study. $R=0.016$ for 970 reflections. 1987 Academic Press, Inc.

Introduction

The crystal chemistry of $M^{\mathrm{I}} M^{\mathrm{II}} \mathrm{PO}_{4}$ monophosphates yields numerous poly-

TABLE I
Parameters Used for the X-ray Diffraction Data Collection, KBaPO_{4}

Apparatus	Enraf-Nonius CAD4
Monochromator	Graphite plate
Wavelength (\AA)	$\mathrm{AgK} \alpha$ (0.56083)
Scan mode	ω
Scan speed ($\%$ sec)	0.014-0.042
Total background measurement (sec)	14-42
Scan width (${ }^{\circ}$)	1.30
θ range (${ }^{\circ}$)	3-30
Intensity reference reflections	113, 213
Number of collected reflections	1556 (h, k, l)
Observed independent reflections	1267
Crystal size $\mu(\mathrm{cm}-1)$	$\begin{aligned} & 0.13 \times 0.14 \times 0.18 \\ & 54.4 \end{aligned}$

morphic phases belonging to at least eight different structure types, such as olivine, arcanite, glaserite, tridymite, $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$, $\beta-\mathrm{Na}_{2} \mathrm{SO}_{4}, \gamma-\mathrm{Na}_{2} \mathrm{SO}_{4}$. A complete updated review of all $M^{1} M^{\mathrm{I}} \mathrm{PO}_{4}$ compounds, for both high- and low-temperature forms, has been made recently by Blum (1). Many phases have ferroic properties. The main difficulty rests in the preparation of crystals. Until now, two KBaPO_{4} forms have been known: glaserite and arcanite (2, 3). The KBaPO_{4} arcanite form was studied by

TABLE II
Positional Parameters and Their Estimated Standard Deviations

Atom	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$B_{\mathrm{eq}}(\sigma) \AA^{2}$
Ba	$-0.00928(2)$	0.250	$0.19501(2)$	$0.695(2)$
P	$0.2361(1)$	0.250	$0.91761(9)$	$0.57(1)$
K	$0.1619(1)$	0.250	$0.58597(9)$	$1.27(1)$
O 1	$0.1976(2)$	$-0.0268(3)$	$0.3460(2)$	$1.10(3)$
O 2	$0.0358(3)$	0.250	$0.9164(3)$	$1.17(4)$
O 3	$0.3015(3)$	0.250	$0.0643(3)$	$0.94(4)$

TABLE III
Refined Temperature Factor Expressions: $\boldsymbol{\beta}$ Values for $\mathrm{KBaPO}_{4}{ }^{a}$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ba	$0.00257(2)$	$0.00612(3)$	$0.00174(1)$	0	$0.00005(3)$	0
P	$0.00267(8)$	$0.0039(2)$	$0.00145(6)$	0	$0.002(1)$	0
K	$0.0068(1)$	$0.0072(2)$	$0.00324(6)$	0	$0.0011(1)$	0
O1	$0.0060(2)$	$0.0054(4)$	$0.0030(1)$	$0.0013(5)$	$-0.0015(3)$	$0.0029(4)$
O2	$0.0029(3)$	$0.0119(7)$	$0.0032(2)$	0	$-0.0007(4)$	0
O3	$0.0042(3)$	$0.0092(6)$	$0.0018(2)$	0	$-0.0012(4)$	0

${ }^{a} T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.

Struck and White (3). A reliability factor of 17.6% had been obtained with data collected from X-ray powder diffractograms; the space group had not been confirmed. Arcanite-type KBaPO_{4} single crystals may be obtained by either of the following chemical reactions, at $650^{\circ} \mathrm{C}$:
$\mathrm{K}_{3} \mathrm{PO}_{4}+\mathrm{BaF}_{2} \rightarrow \mathrm{KBaPO}_{4}+2 \mathrm{KF}$

$$
\begin{aligned}
\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}+\mathrm{BaF}_{2} & \\
& \mathrm{KBaPO}_{4}+\mathrm{KPO}_{3}+2 \mathrm{KF}
\end{aligned}
$$

Stoichiometric amounts of $\mathrm{K}_{3} \mathrm{PO}_{4}$ and BaF_{2} or of $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and BaF_{2} (0.01 mole) are mixed and heated at $350^{\circ} \mathrm{C}$ in a platinum
crucible. The temperature is increased to $650^{\circ} \mathrm{C}$. After 4 hr at $650^{\circ} \mathrm{C}$, the mixture is slowly cooled to $400^{\circ} \mathrm{C}$ and quenched. Crystals are isolated after water washing of the mixture.

Crystal Data and Structure Determination

Approximate unit cell and possible space groups have been determined by singlecrystal film techniques. The cell parameters were refined using $25 \theta\left(9<\theta^{\circ}<11\right)$ reflections collected with an automatic X-ray four-circle diffractometer: $a=7.709(4), b$

Fig. 1. Simplified (a, b) projection of KBaPO_{4}.

TABLE IV
Main Interatomic Distances and Bond Angles In BaKPO_{4}

$\mathrm{K}-\mathrm{O}(1)$	$2.874(2) \AA \times 2$	$\mathrm{Ba}-\mathrm{O}(1)$	$2.695(2) \times 2$	
$\mathrm{~K}-\mathrm{O}(1)$	$3.121(2) \times 2$	$\mathrm{Ba}-\mathrm{O}(1)$	$2.780(2) \times 2$	
$\mathrm{~K}-\mathrm{O}(1)$	$3.081(2) \times 2$	$\mathrm{Ba}-\mathrm{O}(2)$	$2.800(3)$	
$\mathrm{K}-\mathrm{O}(2)$	$2.882(3)$	$\mathrm{Ba}-\mathrm{O}(2)$	$3.048(1) \times 2$	
$\mathrm{~K}-\mathrm{O}(3)$	$3.157(3)$	$\mathrm{Ba}-\mathrm{O}(3)$	$2.727(3)$	
$\mathrm{K}-\mathrm{O}(3)$	$2.854(2)$	$\mathrm{Ba}(3)$	$2.808(3)$	
y	PO_{4} tetrahedron			
$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	
$\mathrm{O}(1)$	$1.539(2)$	$2.528(4)$	$2.513(3)$	$2.518(3)$
$\mathrm{O}(2)$	$110.4(1)$	$1.539(2)$	$2.513(3)$	$2.518(3)$
$\mathrm{O}(3)$	$109.2(1)$	$109.2(1)$	$1.544(3)$	$2.524(4)$
		$109.3(1)$	$109.5(1)$	$1.547(3)$

$=5.663(4)$ and $c=9.972(5) \AA$; space group Pnma or Pn2 $1_{1} ; Z=4 ; d X=4.141 \mathrm{~g} \mathrm{~cm}^{-3}$.

The parameters used for the X-ray diffraction data collection are reported in Table I. Lorentz and polarization corrections have been made. No absorption correction was applied. The crystal structure solved by the Patterson method confirms the model given by Struck and White (3). A unit weighting scheme throughout the leastsquares refinements (4) was applied. The refinement carried out in the space group Pnma gives a final R value of 0.016 for 970 reflections; 297 reflections with $F^{2}<4 \sigma\left(F^{2}\right)$ were eliminated. The final refined parameters are reported in Tables II and III. ${ }^{1}$

Description

A simplified (a, b) projection of KBaPO_{4} is represented in Fig. 1. The framework is

[^0]built with successive arrays of K atoms and PO_{4} tetrahedra at the same height. The barium and potassium atoms are surrounded by PO_{4} tetrahedra in a very compact arrangement. No distortion is observed in the PO_{4} tetrahedron which is very regular with $\langle\mathrm{P}-\mathrm{O}\rangle$ averaging $1.542 \AA$. The pseudohexagonal character of the network is revealed by the value of the ratio $b / c=$ 0.568 in the pseudo-orthohexagonal cell (0.577 is the value for the ideal orthohexagonal cell). The parameters $a=7.709 \AA$ and $b=5.663 \AA$ are close to those of the glaserite structure: $c=7.33 \AA$ and $a=5.66$ $\AA(5)$. The similarity with the structure of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ arcanite (6,7) is well established by the same space group and framework in which one site of K atoms is replaced by Ba atoms. The relation between KBaPO_{4} and glaserite occurs through the similarity of the cell parameters.

References

1. D. Blum, "Proprietés ferroiques des composés du type $\mathrm{MM}^{\prime} \mathrm{PO}_{4}$ ($M=\mathrm{Cs}, \mathrm{Rb} ; M^{\prime}=\mathrm{Zn}, \mathrm{Co}, \mathrm{Mg}$), ${ }^{\prime}$ thesis-Université Scientifique et Médicale de Grenoble (1986).
2. R. Klement and P. Kresse, Z. Anorg. Allg. Chem. 310, 53 (1961).
3. C. W. Struck and J. G. White, Acta Crystallogr. 15, 290 (1962).
4. "Structure Determination Package," EnrafNonius, Delft (1977).
5. R. W. G. Wyckoff, "Crystal Structures," 2nd ed., Vol. 3, p. 114, Wiley-Interscience, New York.
6. W. Ehrenberg and C. Hermann, Z. Kristallogr. 70, 163 (1929).
7. "Strukturbericht," Vol. II, p. 86, Kaliumsulfat $\mathrm{K}_{2} \mathrm{SO}_{4}(1928 / 1932)$.

[^0]: ${ }^{1}$ Lists of structure factors are available on request to the authors.

